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Microscopic relaxation processes in the system "a rock-a saturated fluid" manifest themselves in 
unsteady filtration processes, in which the characteristic time of the macroscopic process is comparable with 
internal times of relaxation. They should be taken into account in interpreting the corresponding tests. 

Asymptotic relations for the pressure recovery curve (PRC) have been obtained previously for the 
relaxation theory of filtration at small times [1] and for large times of the discrete spectrum of internal 
relaxation times [2]. In the present paper, we derive asymptotic relations for the PRC at large times for the 
continuous spectrum of purely dissipative internal relaxation processes. 

For an arbitrary function of time f = f( t ) ,  we denote its Fourier transform by fF = fF(W): 

+0o 
= / e-iWt f( t)  dt. 

--00 

We give briefly the main statements of the theory of relaxation isothermal filtration in a homogeneous 
isotropic reservoir [2-7]. 

In the relaxation theory of filtration, the generalized Darcy law is adopted: 
+co 

ui(t0,  j) = f  C(to - t) o c  (t, J)dt. (1) 
--OO 

Here G = p + pU, u i is the filtration velocity, k is the permeability,/~ is the shear viscosity of the fluid, p is 
the pressure, p is the mass density, U is the gravitational potential; the superscripts i and j take values 1, 2, 
and 3, which correspond to Cartesian coordinates x i. 

The kernel K = K(t) characterizes internal relaxation processes in the fluid-saturated porous medium. 
It obeys a number of conditions that follow from physical and thermodynamic considerations: 

1. K(t)  is a nonnegative, monotonically decreasing function of dimension t -1 (t is time). 
+c~ 

2. / K( t )d t  = 1 is the condition for reducing (1) to the Darcy law for slow processes. 

3. If(t) = 0 for t < 0 (causality); K(O) < +e~ is the condition for a finite signal velocity [8]. 
According to the Paley-Wiener theorem [9], condition 3 makes the function KF = KF(W) holomorphic 

in the lower half of the complex plane. It has been shown [6, 7] that the following dissipation condition holds. 
4. Re KF(W) > 0 for Im ~ 0. 
From condition 2 it follows that 

KF(O) ---- 1. (2) 

From condition 3 it follows that the asymptotic relation 

KF(O.)  ) = kl(io.,') -1  + o ( ]od l - l ) ,  k 1 -- /~((0) (3) 
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is valid in the holomorphic region. 
In the present paper, we consider the case where the fluid-saturated porous medium has a continuous 

spectrum of purely dissipative internal relaxation processes. This means that  the kernel can be represented 
in the functional form 

+oo 

K(t) = J A(r) ~-' exp ( - t / r )  dr, (4) 
o 

where A(r) is a smooth non-negative function. In [2], formally the same functional form (4) was used for the 
kernel, but the weight function A(r) was written as the sum of 6-functions. The Fourier transform for relation 

(4) takes the form 
+cr 

KF@) = / A(r)O + ir )-ldr. (5) 
o 

From (2) and (5) we obtain the normalized equality 

+oo 

= / A(r)  dr. (6) 1 

0 

Furthermore, from condition 3 follows the convergence of the integral 

+oo 
kl = / r - l A ( r ) d r  < +oo. (7) 

0 

It is easy to verify that ,  if relations (4)-(7) are adopted, conditions 1-4 for the relaxation 'kernel are 
satisfied. From relation (5) it follows that  the function KF(W) is holomorphic in the complex plane with a 
cut along the ray Re w = 0, Im w > 0. Using the Sokhotskii-Plemel formula, we can calculate the function 

KF(W) at the cut borders: 

KF+ = KF(iy + e) = LI(y) - irL2(y), KF- = KF(iy -- e) = Ll(y) + i~rL2(y), 
(8) 

V. p. f z - l A ( z - l ) ( z -  y)-ldz, L2(y) = y-IA(y-1). LI(y) 
0 

Here and below, y > 0 and ~ is a small positive number. 
As in [2], we consider the linear problem of the PRC in a cylindrical symmetrical  formulation. The 

dynamics of the pressure field is determined by the integrodifferential equation [2] 

+oo o_ 
p(t0, r) = ze J K(to - t) Ap(t, r) dt, (9) 

Ot 
- -  C,O 

where ze = kE/(m#), r is the distance from the well axis, A = a 2 / a r  2 + r - l a / a r  is the Laplacian, m is the 
porosity, E = (E~ "1 + (m -1 - 1)E21) -1, and E1 and E2 are the elastic bulk moduli for the fluid and the solid 
phase (the skeleton), respectively. The parameter  r varies within the range rl ~< r ~< r2, where rl  is the well 

radius, and r2 is the recharge radius. 
For Eq. (9), it is necessary to adopt two boundary conditions [2]: 

+r162 a 

A _f K ( t o -  t)-~rP(t, rl)dt, A = 2~rrlp0#-l; (10) q(t) 
- - 0 0  

p(t,r2) =Pb.  (11) 

Here p0 is the mass density of the fluid bed, q(t) is the mass yield per unit productive thickness of the bed, 

and Pb is the bed pressure. 
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We shall use a system of units in which 

ee = rl -- 1. (12) 

The quantity ~ has the dimension of 12It, where I is the length, and, hence, condition (12) fixes units of length 
and time. 

We now introduce a new unknown function P = P(t ,  r) = p(t, r) - Pb. 
Taking the Fourier transform of (9)-(11), we obtain the ordinary second-order differential equation 

(A -- (x 2) PF = 0 (13) 

with the boundary conditions 

o& , [ 
qF = AKF ~ r=] PF = 0. (14) 

r = r  2 

Equation (13) now includes a new complex function ~ = ~(w), which is determined from the relations 

a 2 = iw/KF(w) ,  Re a / >  0. (15) 

Using the general conditions 1-4 and without invoking the explicit formula (5), we have previously 
shown [2] that  the function a = a(w) is holomorphic for Im w < 0 and continuous up to the real axis. Formula 
(5) allows one to continue the function ot = a(w) to the upper half of the complex plane. Obviously, here it 
has singularities related to the zeros and singularities of the function KF(w), and also with the procedure of 
extracting the root in (15). Note that 

+oo 

I m K f = - A 1 R e w ,  A1 = f v A ( w ) l l + i r w l - 2 d r > O .  
0 

Therefore, the function KF(w) does not vanish for Re w ~ 0, and, hence, the function a(w) is 
holomorphic with a cut along the ray Re w = 0, Im w > 0. It is not hard to calculate its values at the 
cut borders: 

a+ = a(iy + 6) = iyl/2( K f  + )-l/2; (16) 

a_ = a( iy - e) = --iyl/2( KF_ )- l /2.  (17) 

Problem (13), (14) has the solution 

qF(--Io(ar2)Ko(ar) + Ko(ar2)Io(ar)) (18) 
PF = AKFo~(Ko(crr2)Ii(a) + K](o~)Io(ar2))' 

where gn(z )  and In(z) are MacDonald functions [10]. 
If the well operates with a constant yield Q, we have P = P(r)  = A-1Q In(r/r2).  
To solve the PRC problem, we must set q(t) = QO(- t )  in (18), where O(t) is the Heaviside function. 

We introduce the difference between the current and initial pressure: (I) = P - A-~Q In(r/r2). 
The function (I) F can be calculated from formula (18) if we substitute qF ---- i Q ( w -  ic) -1, which, in real 

time, formally corresponds to the yield q(t) = -Q0( t ) .  As in [2], we shall seek an intermediate asymptotic 
expression of the PRC for which the finiteness of r2 can be ignored. In the limit r2 --+ -[-o~, relation (18) 
reduces to the form ~)F = - q F K o ( a r ) / ( A g F e x g l  (a)). 

To determine the PRC, it is necessary to calculate the function ~(t) = (I)[T=I. Taking the inverse 
Fourier transform of this function, we obtain the relation 

+oo 

1 (19) ~(t)  : - ( 2 ~ A ) - I Q i  / (w - i e ) - ' f l (w )e  "~` dw Ill(w) - 

KFaKI (a )J  

Formula (19) is the PRC in the form of a functional of the kernel K: 

~(t) = ~[t; K(t')]. (20) 
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As in [2], we shall seek the asymptotic ~(t)  for large t. If t far exceeds the internal relaxation times, 
the effect of the relaxation kernel becomes insignificant. Therefore, if we simply pass to the limit t ---} +cr  
in formula (19), we obtain the usual logarithmic asymptotic relation [11] that  corresponds to the case of a 
trivial kernel KF = 1. To find the asymptotic relation for large t comparable in order of magnitude with the 
internal relaxation times, in functional (19) we should perform the substitution 

t = t,5 -1, K(t') = K,(t',) (21) 

and, considering t, and K,  fixed, compute the asymptotic expression for 6 ---} +0. As 6 --, +0, functional 
(20) increases infinitely. In the space of functionals of the form of (20), we introduce the equivalence ratio: 
the functionals qgl and r are equivalent (~1 "" ~2) if the substitution of (21) in the expressions for the 
functionals for 6 -~ +0 leads to 

�9 1 - ~ 2  = O ( 1 ) .  

Going over to the equivalent functionals, we simplify formula (19). For this, recall that  the MacDonald 
functions admit the representation [10] 

Ko(z) = - J 0 ( z  2) In(z/2) + W0(z2), Kl(z) = z - l (J l ( z  2) In(z) + Wl(z2)), (22) 

where Jn(z) and W,,(z) are integer functions, J0(0) = WI(0) = 1, Jl(0) = 0, W0(0) = - C ,  and C is the 
Euler constant. Formulas (22) allows one to distinguish the asymptotic expression of the function fl(w) by 
substitution (21). In this case, we obtain 

+or 
9r --- (2r J (w - ir f2(w) = ln(o~/KF). (23) 

~Ot;) 

We transform the integral along the real axis in formula (23) to the integral along contour C (Fig. 1). 
Uncovering the integrands with allowance for (8), (16), and (17), we obtain 

+ o 0  

(2rA)-lQi(i~r lnr + I1~ + I2~), I1~ = i~r f y-le-yt  dy, ~(t) 
J r ( 2 4 )  

f g-l((lno%/KF+) -- (lno~_/KF_) -- iTr)e-ytdy. I2~ 

Here ~ is the radius of an infinitely small circumference along which the point • = 0 is handled (Fig. 1). For 
the passage to the limit r ---+ 0 in formula (24), it is reasonable to use two auxiliary formulas from [12]: 
formula No. 3.352.4 

~r162 exp__(--bz) = _ exp (ab)Ei (-ab) (a, b > 0) (25) dz 
a + z  

o 
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and formula No. 8.214.1 

Ei(z) = C + In ( - z )  + ~ zn(nn!) -I (z < 0). (26) 
n = l  

Note that  the integral 12~ converges as e ~ 0. The  limit I1~ as e --* 0 is calculated based on formulas 
(25) and (26). As a result, relation (24) takes a form that  does not contain the parameter  e: 

~(t)  ,~ (27r)~)-lQ(r In t + ~r In C + ii20). (27) 

We can apply subst i tut ion (21) to the functional /2o and calculate the main term of the asymptotic 
expression as 6 ~ 0: 

120 "" ( - i  In tJ(t)), 
(28) 

J(t) = (2 i ) - '  f y-l(K~.~_ - KFI_) e -at dy. 
0 

From (27) we finally obtain the desired asymptot ic  expression for the PRC: 

v(t)  ,-- (2A)- 'Q(1 + r- 'J( t ) )  In t. (29) 

Using formulas (8), it is not hard to verify that  J(t) is a positive function: 

+r 
J(t) = 7r J y-2A(y-1)lgF+l-2e-Ytdy > 0. (30) 

0 

On the other hand,  t reat ing relation (28) as an integral in the complex plane along the contour C 
(Fig. 1), we can rearrange it with allowance for (3): 

7r-lJ(t) = (2~r) -1 f ((iw --e)-lIf71 - k l l ) e i W t d a ) .  

--00 

The right side of this equation is the  inverse Fourier t ransform of the function ((iwKf) -1 -- k~l). 
Thus, internal relaxation processes lead to the appearance of the function J(t) in the expression for 

the PRC (29). This function vanishes for the trivial kernel KF = 1. By virtue of inequality (30), neglect of 
relaxation phenomena in interpreting experimental PRC leads to underest imated permeabili ty k. 

To constructively use formula (29) in interpreting PRC, one should specify the function J(t). Note that 
the asymptot ic  behavior of J(t) for large t is determined by the asymptot ic  behavior of the weight function 
A(r) for large relaxation times. We assume that,  for large r ,  we have the exponential spectrum 

A(~') ~ a0r -1-fl,  0 < /3  < 1. (31) 

Assumption (31) satisfies the condition of convergence of integral (6). From (30) and (31) we find the 
asymptotic expression of J(t) for large t: 

J(t)   alt- , = (32) 
Subst i tut ing the asymptot ic  expression (32) into (29), we obtain a formula for the PRC for the 

exponential spect rum of internal relaxation times. In comparison with the classical formula for the PRC 
[11] 

Ap = (2A)-IQ In(t/to), (33) 

where to is a constant with the dimension of time, the new formula contains an additional factor of the form 
(1 + air -fl) and two additional "adjusting" parameters: fl and hi. 

As a graphical illustration of the result obtained, Fig. 2 shows a family of the curves of F = (1 + 
b(t/to) -fl) ln(t/to) versus z = ln(t/to) for fl = 1/2 at various values of the parameter  b. The case b = 0 
qualitatively corresponds to the classical PRC (33). 
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As can be seen from the results obtained, for an arbitrary spectral function A(r), the problem of 
determining the filtration-capacity properties of a bed from the PRC becomes incorrect. For a particular type 
of spectral function with a finite number of free parameters, the problem of interpreting the PRC can be 
correct, but this problem requires additional investigation. 
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